
Pi-Calculus
Quick Intro

Some History

In the late 70ties with the grow of distributed systems, some
people start to realize that they need a realistic ways of describing
communicating systems.

They create something called process calculi/process algebra.

Some of these process calculi are:

CSP (Tony Hoare): Communicating Sequential Processes
CCS (Robin Milner): Calculus of Communicating Systems
Pi-calculus (Robin Milner): Extension of CCS, more flexible
and support the ability to pass channels as data along other
channels. This feature allows you to express process mobility,
which in turn allows you to express changes in process
structure.

What is Pi-Calculus?

π -calculus is a model of computation for concurrent
systems. The syntax of π-calculus lets you represent
processes, parallel composition of processes, synchronous
communication between processes through channels,
creation of fresh channels and replication of processes.

Process? Channel????

A process is an abstraction of an independent thread of
control.
A channel is an abstraction of the communication link
between two processes. Processes interact with each other
by sending and receiving messages over channels.

The Rules

Let P and Q denote processes. Then
P | Q denotes a process composed of P and Q running in
parallel.
a(x).P denotes a process that waits to read a value x from the
channel a and then, having received it, behaves like P.
ā〈x〉.P denotes a process that first waits to send the value x
along the channel a and then, after x has been accepted by
some input process, behaves like P.

The Rules (cont.)

(νa)P ensures that a is a fresh channel in P. (Read the Greek
letter “nu” as “new.”)
!P denotes an infinite number of copies of P, all running in
parallel.
P + Q denotes a process that behaves like either P or Q.
0 denotes the inert process that does nothing.

All concurrent behavior that you can imagine would have to be
written in terms of just the above constructs.

Simple Example

Suppose you want to model a remote procedure call between a
client and a server.

int incr(int x) { return x+1; }

The Server: !incr(a, x).ā〈x+1〉
The Client: (νa)(incr〈a, 17〉 | a(y))

All Together:
!incr(a, x).ā〈x+1〉 | (νa)(incr〈a, 17〉 | a(y))

Can you program in π-calculus?

Yes, but you wouldn’t want to.

Pi Calculus can be viewed as an assembly language.

It's good as modeling language. A lot of communication
protocols has been expressed using Pi Calculus.

Just for you to know ...

π-calculus is a natural choice for describing concurrent
processes that communicate through message passing.

It is not a natural choice for describing abstract data types. It is
not a natural choice for describing states with rich or complex
data structures.

Pi-Calculus Vs Petri Nets

Compared in the Process Awareness Information Systems
(PAIs) context
Both Petri Nets and Pi-calc provides solid semantics and
strong analysis methods
In reality only a few cases requires such
strong/mathematical foundations.

Pi-Calculus Vs Petri Nets

Petri Nets are from the early 70ties + ton of extensions
Pi-Calc comes from the CSS but it was concieved during the
early 80ties
Petri Nets are based on directed graph
Pi-Calc processes are based on textual descriptions

Pi-Calculus Vs Petri Nets

Example Petri Net

Pi-Calc a.(b.c.d | e.f.g).h WRONG!!

Pi-Calculus Vs Petri Nets

Petri Nets doesn't have the notion of mobility as foundation
Petri Nets advantages:

Graph representation
Expressiveness
Improved modeling experience
Better readability

Conclusions

Too formal (mathematical) despite the graphical nature
State Based instead of Event Based

BPMN -> Event Based
Pi-Calc -> Event Based
Petri Nets -> State Based

Abundance of Analysis Techniques
Both have tons of theory and methods for analysis

My Conclusions

Formal method of analysis and strong semantics are good,
but less useful high level / abstract representations.
Right now BPMN2 defines a strong syntax and strong
behavioral semantics. But it's formality it's not pure
mathematical.
Some sacrifices are allowed for more user friendly/business
friendly/realistic and high level representations.

